
Software-based Buffering of Associative Operations
on Random Memory Addresses

Matthias Hauck∗†, Marcus Paradies‡, Holger Fröning∗
∗ Institute of Computer Engineering, Ruprecht-Karls University of Heidelberg, Germany

Email: holger.froening@ziti.uni-heidelberg.de
† SAP SE

Email: matthias.hauck@sap.com
‡ DLR

Email: marcus.paradies@dlr.de

Abstract—An important concept for indivisible updates in
parallel computing are atomic operations. For most architectures,
they also provide ordering guarantees, which in practice can hurt
performance. For associative and commutative updates, in this
paper we present software buffering techniques that overcome
the problem of ordering by combining multiple updates in a
temporary buffer and by prefetching addresses before updating
them. As a result, our buffering techniques reduce contention
and avoid unnecessary ordering constraints, in order to increase
the amount of memory parallelism. We evaluate our techniques
in different scenarios, including applications like histogram and
graph computations, and reason about the applicability for
standard systems and multi-socket systems.

I. INTRODUCTION

Modern computer systems are relying on an increase of
available parallelism to achieve performance scaling, and
technical constraints demand for a continuation of this trend.
Besides the growing amount of homogeneous parallelism, such
as instruction-level parallelism (ILP), multicore, and SIMD,
heterogeneity also increases due to specialized architectures
(GPGPU, TPU, FPGA). Similarly, memory is growing in
capacity and performance, albeit at a lower rate. Emerging
memory technologies like Storage Class Memory (SCM)
promise to continue this trend by providing large, persistent
memory. However, these improvements come with certain trade-
offs regarding memory access latency.

The pervasive use of concurrency, especially multithreading,
requires efficient solutions for concurrency control. A well-
known concept for this purpose are atomic operations (atomics),
which allow lock-free programming. An atomic is indivisible
regarding other simultaneously applied operations on the same
memory address, which makes atomics particularly suitable
for update operations based on a read-modify-write scheme.

Practical algorithms can apply update operations on a
single or multiple different shared memory addresses. There
are multiple important algorithms that scatter updates across
many memory addresses like push-based graph algorithms
(PAGERANK, Breadth-First Search (BFS)1), histogram gen-
eration, or hash-based aggregation. Because of their cost
and to leverage all available system capabilities, there exist

1The use of a single data structure for duplicate elimination is common.

dozens of parallel implementations of these algorithms. Simple
parallelization schemes often rely on atomics to resolve data
dependencies without the overhead of explicit locking, making
atomics for these cases useful and appropriate.

However, atomics, as found in common microprocessor
architectures like x86 [1] or ARMv8-A [2], usually guarantee
more than only mutual exclusion. In particular, they come
with ordering guarantees, adhering to the memory consistency
model, and are executed sequentially. Even though there are
architectures like IBM POWER [3] that support resortable
atomics, these atomics usually lack strong progress guarantees.

As a result, atomics have to be executed in order—often even
with memory fence semantics—and are blocking in the context
of their originating thread. The execution order is serialized, so
operations that would use low-latency cache copies might have
to wait for operations on slow main memory. Similarly, the
lack of strong progress guarantees can lead to many replays
in high-contention scenarios. Consequently, even threads with
high cache hit rates might observe a memory performance
degradation, as the average memory access latency increases
and the amount of memory-level parallelism deteriorates. The
trends of higher parallelism, and the increasing average memory
access latency due to emerging technologies like SCM, suggest
that the implications of atomics on overall performance are
increasing dramatically.

A well-known technique to tolerate latency is prefetching
data into a higher level of the memory hierarchy. When all
relevant addresses are already in the cache, the cost of the
limited dynamic reorder capability is reduced. The problem of
using prefetching is that it needs to be done tens to thousands
of cycles before the update operation to ensure that the value
is cached. However, prefetching is difficult as the prefetching
distance, i.e., the distance from prefetch instruction to memory
operation, can be either too long or too short. Thus, it is very
desirable to decouple the execution of an update operation
from its issue, allowing to optimize prefetching effectiveness.

In this work, we design and analyze software techniques that
help to overcome limitations of atomics for associative and
commutative updates. This class of operations is commonly
used in push-based graph algorithms and is insensitive to
the update order. We propose a series of software buffering

techniques for update operations to reduce memory contention
and to increase memory-level parallelism using prefetching.
As the usefulness of such buffering techniques highly depends
on the system, including parallelism, memory latency and data-
induced memory contention, we put attention on reporting and
analyzing applicability constraints. We start with a descrip-
tion of our software-based buffering techniques (section III,
section III-D: Implementation), which tolerate the memory
access latency of associative and commutative updates in multi-
threaded environments.

Second, we analyze performance and applicability of these
techniques for different usage scenarios (section IV: Method-
ology), with varying sizes and types of input data, contention
patterns and memory access latency (section V for commodity
x86 and DRAM technology of different scale). By using
them, we outline how different hardware properties impact
the applicability of such buffering techniques. We show how
to apply the buffering techniques to two fundamental graph
algorithms (BFS, PAGERANK) that rely on associative and
commutative updates (section VI). Before we conclude, we
briefly discuss applicability and application integration of the
proposed buffering techniques (section VII).

II. BACKGROUND

Atomics are one of the fundamental synchronization techniques
in modern multi-core CPUs. These operations update a memory
location such that the operation appears indivisible.

The x86 instruction set architecture (ISA) [1] provides two
types of atomics—direct-fetch and compare-and-swap (CAS).
Fetch-atomics apply an indivisible update directly on a memory
address, but they are only defined for integer values. CAS
can be applied to all data types of up to 8B (with CMPXCHG
16B). To achieve this, the atomic operation loads a memory
address, updates the value and writes this result to the memory
address, if the value at the memory address has not been
changed in the meantime. If the value has been changed, the
CAS operation has to retry. In contrast, a fetch-atomic locks
the cache line that will be updated during the complete update
from the first load until the result is written to the memory.

In a multi-threaded environment with a single shared address
space not only the atomicity of updates is important, but also
the order in which they become visible to other threads. Thus,
programming languages like C++ [4] provide options to specify
in which order atomics can become visible and how they can
be reordered. ISAs provide ordering guarantees or mechanisms
(e.g., fences) to implement the desired memory ordering. The
guarantees made at programming language level not necessarily
have to match the guarantees at ISA level, as long as the ISA
guarantees are stronger. For example, X86 is restrictive as an
atomic cannot be reordered with any other memory operation
(loads and stores). As a consequence, even a relaxed atomic at
C++ level is often executed with stronger guarantees by the
architecture.

To complement automatic hardware prefetching, ISAs like
x86 or ARMv8-A provide prefetch instructions to partially
or completely hide memory access latency. These prefetch

instructions can provide additional information about an optimal
cache level, if there is temporal reuse, or which type of
operation (read/write) will be executed. Lee et al. [5] provide
an overview about software and hardware prefetching and how
they can interact.

However, in comparison to a load, a prefetch does not change
the state of the program as it only interacts with the cache.
When a thread writes to a memory address that another thread
had successfully prefetched, but not loaded, the cache coherence
protocol simply invalidates the prefetched entry. While load
and store operations on x86 are serialized for atomics, nothing
indicates in the reference manual [1] that this also holds true
for prefetches2.

III. SOFTWARE BUFFERING FOR COMMUTATIVE AND
ASSOCIATIVE UPDATES

Many applications like push-based graph algorithms, histogram
computations, or hash-based aggregations perform update
operations that are scattered across many memory locations.
In parallel implementations, these scattered updates are often
realized using atomic operations and can be a root cause of
poor performance. To understand this potential performance
problem, let us analyze a basic graph processing problem as
motivating example.

A. Motivating Example

Graphs that represent the relationship between different vertices
can be represented as a simple list of edges (edge list), where
each edge is a pair of source and target vertex IDs. For example,
a Compressed Sparse Row (CSR) data structure, a commonly
used graph representation, includes a prefix sum of the vertex
degrees, i.e., the number of incoming or outgoing edges per
vertex. The vertex degrees can be obtained by counting the
occurrence of the vertex IDs in the edge list. In parallel
implementations, multiple threads read portions of an edge
list and update the counters of these vertices. This has several
consequences:

• Data-driven: the counter to update is not known before
the vertex ID is read from the edge list.

• Ordering: besides the update itself, the algorithm does not
depend on intermediate counter values, consequently the
order of updates is irrelevant.

• Atomicity: because multiple threads could try to update
the same counter concurrently, these updates need to be
atomic to prevent lost updates.

• Contention: as part of the atomic update, all other cache
copies are invalidated. Depending on the data distribution
of the edge list, some counters might be heavily updated,
which causes cache contention.

Since the algorithm is memory-bound, performance can usually
be improved by two approaches: the reduction of cache
contention and by hiding memory access latency. Our approach
in general is to address these approaches using per-thread

2According to our experiments, this applies also to hardware prefetching
of normal loads. The (hardware) prefetch of the initial load in a CAS style
atomic can therefore improve performance

Fig. 1: Activities of the direct mapping buffer during a buffer
miss (red) and mapping to target data structure (dashed)

buffering techniques. Such techniques exploit the fact that
updates scattered across many addresses are often associative
and commutative. We propose four major buffering techniques
that address these optimization directions: three small buffer
techniques (direct mapping buffer, a FIFO buffer, a combination
of both), and thread-local, fully replicated data structures.

B. Small Buffers

In this subsection, we present a direct mapping buffer, a FIFO
buffer, and a buffer that combines both, which all have some
common properties: every thread has its own local, isolated
buffer, i.e., within the buffer no synchronizing operations are
required. Synchronization operations only become necessary
when an (update) entry is evicted from the buffer and applied
to memory. In addition, it can be assumed that for reasonable
small sizes the buffer fits into L1 cache, while the buffered data
structure resides on a lower and slower level (main memory).

1) Direct Mapping Buffer: The main purpose of the direct
mapping buffer (cf. figure 1) is to combine updates on
frequently used memory addresses and has many similarities
with a hardware cache: to access the buffered values fast, a
function I maps every memory address A of the buffered data
structure to an index of an entry in the buffer. I can be chosen
arbitrarily but must be efficiently computable. To distinguish
to which address a buffer entry maps, the buffer internally
stores an address tag T in addition to the buffered value V
for each of the N entries. The memory consumption M of the
buffer per thread is therefore M = N · (Tsize + Vsize). Because
we assume no prior knowledge about the data, we choose as
mapping function I(A) = A mod N .

In the case of an update the buffer checks if it already has an
entry for the related address by applying the mapping function
and checking if the address tags match (cf. figure 1 Step 1). If
true, the update is applied to the entry value. If false and this
entry is used, the old entry is evicted and replaced (cf. figure 1
Step 3 & 4). If there are no updates anymore, the buffer is
flushed and all entries are evicted.

Essentially, the direct mapping buffer is a cache with an
associativity of 1. In general, it is possible to use a higher
associativity or to buffer multiple values per entry (e.g., a
full cache line). The problem is to implement such a buffer
efficiently in software. A higher associativity requires more
address comparisons for every access and a more complex

Fig. 2: Activities of the FIFO buffer during a buffer miss(red)
and mapping to target data structure(dashed)

Fig. 3: Activities of the combined buffer during a buffer miss

eviction strategy to decide which entry to replace. Therefore,
a possible performance improvement would be easily offset by
an increased instruction overhead.

A direct mapping buffer can also be combined with prefetch-
ing (cf. figure 1 Step 2). Then, a prefetch instruction is issued
when a new entry is inserted into the direct mapping buffer.
When later an entry is evicted from the buffer and its update
applied to memory, the probability of a cache hit increases.

2) FIFO Buffer: The main purpose of the first-in first-out
FIFO buffer (cf. figure 2) is to defer update operations on a
shared, memory-resident data structure, such that multiple
updates on the same location can be combined and the
corresponding address prefetched. New updates are inserted at
the end (cf. figure 2 Steps 1 & 5), while old updates at the
front of the buffer are applied to the buffered data structure
(cf. figure 2 Steps 3 & 4). This allows prefetching memory
addresses (cf. figure 2 Step 2) such that the deferred update
will likely result in a cache hit.

As all updates are assumed to be associative, late combining
in the FIFO buffer is used to combine multiple updates to the
same location into one single update. During insert, the already
existing entry will be updated instead of inserting a new entry.
This reduces the buffer contention, and as a result, entries
can remain longer in the buffer and increase the probability of
additional combining. The disadvantage is that, for every insert,
additional work proportional to the buffer size is required, so
only small buffers are reasonable. As each buffer entry needs
an address tag and a value, the memory consumption formula
is equivalent to the direct mapping buffer formula.

3) Combined Buffer: This technique combines the two
previous building blocks: the direct mapping buffer as a front
end and the FIFO buffer as an eviction buffer. Figure 3 shows

how both stages interact by depicting the activity sequence
and the data movement between the buffer stages, when a
buffer miss occurs. This approach combines the advantages of
both buffering techniques. The direct map combines updates on
often-used addresses to reduce contention, while the FIFO buffer
hides latency using prefetches. A disadvantage of this approach
is a slightly higher instruction count in case of a miss compared
to a direct mapping buffer or FIFO buffer alone. In addition,
the memory consumption M is M = Mdirect mapping +MFIFO,
so it is typically higher then both buffer in isolation.

Note that while both, direct mapping buffer and FIFO buffer,
already make use of update combining, which might seem
redundant, the combined buffer maintains this. Even though
the main purpose of the direct mapping buffer is to combine
updates, the FIFO buffer serves as an extension of the (limited)
associativity for often-used indices.

C. Thread-Local Fully Replicated Data Structures

For associative and commutative update operations, the main
alternative to use small local buffers is to use fully replicated
data structures, which replicate the target data structure on a per-
thread basis. For hash-based aggregation, this approach already
has been used by Cieslewicz and Ross [6]. By using fully
replicated data structures, all updates are applied to the local
copy without the need of synchronization. When a globally
consistent state is required, all thread-local copies are merged.

As a result, fully replicated data structures mainly avoid
the use of synchronization, in particular atomics, as updates
on replicated structures do not result in data dependencies.
Non-atomic updates are typically cheaper than their atomic
counterparts as they provide no mutual exclusion or ordering
guarantees, which allows reordering and speculative execution.
Also, this approach can improve cache usage as other threads
will not invalidate cached entries. This concept, however, has
multiple downsides, especially when the ratio of updates to
update targets is low. The most important one is clearly space
complexity, which is linear to the number of threads. For
example, we would require 14GB for the counter, if we count
the occurrence of 64 million IDs in a list using 4B counters
and 56 threads in parallel. If the list itself has only 32 · 64
million entries (each 4B, or a total size of 8GB), the required
space would increase by an additional factor of 1.75 to 22GB.

The second main disadvantage is the merging of thread-local
results into a single, global form. With an increasing number of
threads, also the number of local results to be merged increases.
Similar, merge complexity increases linearly with the number
of elements to be merged. While merging can be typically done
in parallel3, the merge of complex data structures like hash
maps is complicated, in particular when done thread-parallel.

However, when an algorithm is iterative and requires the
preparation of a new target data structure for each iteration
anyways, using fully replicated data structures is usually
applicable as the downsides are partially compensated.

3In principle the number of threads in the update phase and the merge phase
can be chosen independently.

Listing 1: Buffer API Usage.
1 TBuffer< // Direct mapping buffer
2 countMap,// Type of buffered data structure
3 Sum, // Update operation
4 FIFO, // Eviction strategy
5 16 // Direct buffer size
6 > countBuffer(
7 edgesPerVertex); // Buffered data structure
8
9 // Update operation

10 countBuffer(
11 id, // Entry to update
12 1); // Value to add

D. Implementation Details

One of the main objectives of software buffering is an efficient
implementation with low overhead, as otherwise performance
gains originating to reduced memory access latency can be
easily exceeded by instruction overhead.

1) Small Buffers: The software buffers (FIFO, direct mapping,
and combined) are realized in C++ using templates (cf. list-
ing 1) to be fast and configurable. The template arguments are
used to describe statically how the buffer will be used (buffered
object type, update operation), and to define parameters like
eviction strategy or buffer size(s). By using templates, the
methods of complex operations like update can be completely
inlined, and arithmetic operations (e.g., divisions) can be
replaced with cheaper equivalent operations, if applicable.

All three types of the buffer are realized as combinations of
direct mapping and FIFO as eviction strategy. A dummy write
strategy even allows creating a buffer variant that forwards
updates directly to memory. The direct map essentially consists
of two arrays, one for the address tags and one for the values.
Every address belongs to a single index in the arrays, where
the index is the remainder of the address divided by the buffer
size. The FIFO is essentially a ring buffer that, like the direct
map, consists of two arrays, one for the address tags and one
for the values.

Both, direct map and FIFO, perform prefetching of addresses
that will be updated using prefetch instructions. Prefetches are
issued when new updates are inserted into the buffer or pushed
to the eviction stage for the combined buffer. To guarantee a
global state at specific points, the buffers use a flush method,
which evicts all entries in the buffer. The flush method is
automatically triggered when a buffer gets destructed.

2) Thread-Local Fully Replicated Data Structures: The
implementation of the thread-local fully replicated data struc-
tures differs from the buffer realization as here every thread
owns a complete copy of the data structure. During the main
computational phase every thread applies updates to this local
structure to generate a partial result. These partial results are
merged afterwards.

In our experiments, we only merge std::vector in-
stances and restrict the update operations to adds. Therefore,
every thread receives an equal-sized ID range of the result
vector that it merges using the partial results from all other
threads. Every thread then computes the sum of all partial
results for all its IDs and stores them in the final result vector.

IV. MICRO-BENCHMARKING METHODOLOGY

The focus of our initial experiments is to show, which of the
buffer techniques are applicable for a specific scenario and how
they address the implications of atomics in terms of memory
contention and parallelism. As a test algorithm, we use the
degree-counting algorithm as described as follows:

A. Test Algorithm

For our experiments we use a degree-counting algorithm, a
variant of histogram computation (cf. section III). We choose
this algorithm, because its parameters can be varied almost
arbitrarily to model different scenarios for a thorough analysis
of different buffering techniques. This algorithm counts the
occurrence of vertex IDs in an edge list as source or target
vertex, and stores the result in a counter array. When executed in
parallel, the input edge list is tiled in non-overlapping partitions
of 16k elements each. If this results in fewer partitions than
cores, we reduce the number of threads accordingly.

The partitions are dynamically dispatched as work packages
to the threads using OpenMP’s parallel for dynamic scheduling
construct. This dynamic scheduling keeps all threads utilized
during the algorithm execution even if the elapsed time of
different work packages varies. The updates of the counter
array are implemented using either direct updates, our buffering
techniques, or thread-local, fully replicated data structures. As
buffer size we use for direct mapping 16, and for FIFO 8, so
by using 64 bit counter and address tags per thread the buffer
have the following size: direct mapping 256B, FIFO 128B,
and combined 384B.

B. Test Data

Another important factor is the selection of input data as it
determines the update pattern on the counter array, and therefore
the amount of contention. As representatives of a skewed data
set, which typically exhibits a large amount of contention, we
choose RMAT graphs using a parameter set similar to the
Graph500 Benchmark [7]. These graphs are scale-free [8], so
many vertices have few in- and outgoing edges, while few
vertices have many in- and outgoing edges. The number of
edges of a vertex is equivalent to the occurrence in the edge list.
Because numerous vertices are isolated and have no incoming
or outgoing edges at all, we encode the vertex IDs upfront
using a dictionary to obtain a dense ID domain. Every vertex
with an ID occurs at least once in the edge list.

As non-skewed data sets typically cause low contention, we
furthermore generate edge lists, in which all vertices occur as
source or target with an identical frequency. The vertices of
source and target are randomly shuffled using different random
number generation functions.

For our measurements, we generate for both types of test
data edge lists at different scale factors (SF), with |V | = 2SF ,
|E| = 16 · |V | and 32 Bit vertex IDs.

C. Test Systems

Nowadays NUMA systems with one or two sockets are
commonplace in server environments. Because of the limited

number of sockets, there are no expensive remote or multi-hop
accesses. We expect systems with such a low memory access
latency to be the worst case for buffering techniques, which
try to hide memory access latency.

For most experiments, unless noted otherwise, we use a two-
socket system equipped with Intel Xeon E5-2660 v4 processors,
each with 2 ·14 cores @2.0GHz and Hyper-Threading enabled,
35MB last-level cache for each socket, and 128GB DDR4
RAM (SYSTEM A). In general, we use GCC 7.1 with OpenMP,
optimization flags -O3 and march=native. All tests use
Linux systems without the kernel-level page table isolation
patch4. Besides availability reasons, our code does not cause
many context switches, syscalls or I/O, so we do not expect a
significant impact.

D. Experimental methodology

We measure the elapsed time from the point where all necessary
data structures are initialized until the algorithm completed
and is able to return a result. The elapsed time for every
configuration of buffering technique and input data is measured
multiple times, so that the combined elapsed time equals 60 s,
with a maximum of 120 runs and a minimum of 8 runs. The
reported elapsed time, update rate, and other values derived
from it, is the mean value of these runs. For a description of
the computing system, please refer to the experiments.

V. EXPERIMENTS

As part of micro-benchmarking, we evaluate the degree
counting workload on a standard CPU system (SYSTEM A).
Our expectation is to observe three types of effects besides
performance improvements: cache capacity effects, contention
effects, and overhead-related effects. Besides the previously
introduced four buffering techniques (Direct Mapping, FIFO,
Combined and thread-local fully replicated data structures), we
furthermore compare against a plain sequential implementation
and a simple parallel implementation that uses no buffering.

Sequential and fully replicated data structures have low
instruction overhead and are not prone to contention due to
updates from other threads. Both should be able to exploit
caches well, but they are also affected by increased memory
access latency in the case of capacity misses. For the simple
parallel implementation, we expect a similar behavior except
that it will be affected by contention.

The buffers in contrast have a high overhead as they need
to check buffer contents for every update. In addition, there
is update contention, which increases access latency as there
is only one global data structure that will be updated. As all
buffers are capable of hiding latency, capacity misses when
the main data structure exceeds cache size should be damped.

Regarding the data sets, we expect that they will cause
different cache capacity and contention effects: the skewed data
set (RMAT) will cause contention and its often-updated part
is much smaller than the complete data structure. The update
pattern of the non-skewed data set (EQUAL) has virtually no
hot spots that cause contention.

4See https://lwn.net/Articles/741878/ for details.

Sequential Simple Parallel FIFO Direct Mapping Combined Fully Replicated

12 14 16 18 20 22 24 26

0

500

1,000

1,500

Scale factor

U
pd

at
e

R
at

e
(M

il
l.
O
p
s
.

s
e
c

)

(a) RMAT graphs (highly skewed)

12 14 16 18 20 22 24 26

0

1,000

2,000

Scale factor

(b) EQUAL graphs (not skewed)

Fig. 4: Update rate for the degree counting micro-benchmark (SYSTEM A)

Simple Buffered

Buffered (No late combining) Buffered (write prefetch)

12 14 16 18 20 22 24 26
0

200

400

600

Scale factor

M
em

or
y

St
al

ls
(C

y
c
le
s

E
d
g
e

)

Fig. 5: Memory stall cycles per edge on an RMAT graph for
the degree counting micro-benchmark (SYSTEM A)

A. Skewed Input Data (RMAT)

In our experiments with a skewed data set (cf. figure 4a) we
can see that the behavior related to the input size can be
divided in three different regimes: up to SF 16 with sequential
being fastest, from SF 17 to SF 23 with fully replicated data
structures being fastest, and above SF 23 with one of the small
buffers (FIFO, direct mapping, combined) being fastest.

All three buffers show a similar performance behavior
(cf. figure 4a), with a small advantage for the combined buffer.
This is an expected behavior as they process data in a similar
fashion. The FIFO acts as a fully associative cache, which
reduces contention, because our FIFO implementation combines
newly inserted updates with updates to the same address that
are already in the buffer (late-combining). The direct mapping
buffer on the other side hides latency by deferring updates and
prefetching memory addresses. Between insertion and eviction,
an update stays for some time in the direct mapping buffer. The
combined buffer performs better as it combines the advantages
of both approaches at a higher efficiency.

We expect that the cache size and contention effects have
a significant impact on performance. At SF 16 this data set
has a size of 365 kB, and at SF 23 a size of 35MB, which is
close to L2 and L3 size of 256 kB respectively 35MB. The
cache boundaries can therefore be an explanation for the border
between the second and the third regime. This also explains
why the performance of the fully replicated data structures
approach drops earlier, as it normally utilizes more cache.

Another important fact for the explanation of the regime
boundary at SF 16 is that the number of generated work

packages starts to exceed the number of CPU threads. The
memory stall cycles per edge are reported in figure 5, and
these results suggest that memory access cost peeks at SF 16.
It is reasonable to assume that the contention is high, caused
by the large number of threads and the small size of the main
data structure. This assumption is supported by the fact that the
access latency increases further, when the write prefetch is used
instead of a normal prefetch, which prepares a memory address
for an update. In addition, it explains why the simple approach
and the buffer both have a performance worse than the other
approaches. Finally, for increasing graph sizes, the contention
decreases and subsequently the performance increases.

B. Non-Skewed Input Data (EQUAL)

Results in terms of update rate for the non-skewed data set
(cf. figure 4b) show a different behavior, in spite of similar
points in terms of regime separation. For this input data, the
size of the counting structures is 512 kB for SF 16 and 64MB
for SF 23. Thus, SF 16 requires twice the size of the L2, but
SF 23 fits in the combined L3 caches of all sockets. In general,
we can still apply the same reasoning for the boundaries as
for the skewed data.

For sizes of SF 17 and larger, the buffered approaches are
superior to all others, thus these results suggest to avoid using
the fully replicated data structures approach on non-skewed
data. For sizes of SF 17 or smaller, the sequential approach
performs best, similar to results on skewed data.

Noticeable are two observations for SF 17 and larger: first,
the poor performance of the fully replicated data structures
approach can be explained by much less spatial and temporal
reuse, as for non-skewed data updates are scattered uniformly
across the complete data structure. Second, here the other buffer
techniques are much faster compared to the performance using
skewed data. The primary reason here is that the contention
decreases so much that it virtually does not exist. This allows
the buffers to fully utilize their prefetching capabilities to hide
memory access latency.

C. Memory access latency and contention

Important factors for the atomic update performance are
memory access latency and contention, which are prevalent for
multi-socket systems due to inter-socket communication and
cache coherence protocol overhead. We expect that the buffer

1 Socket 2 Sockets 4 Sockets

12 14 16 18 20 22 24 26 28

0

100

200

Scale factor

Sp
ee

du
p

[%
]

Fig. 6: Speedup of combined buffer compared to a simple
parallel update scheme on RMAT graphs (SYSTEM B)

is able to compensate parts of such a latency increase, therefore
being inline with scaling and future technology trends.

However, this latency compensation is limited for two main
reasons: first, there is inter-socket cache coherence overhead
as additional coherence activity is required to lock the cache
line during the update. Second, the bandwidth between the
sockets is limited and the amount of transported data increases
as some of the additional prefetches might be futile.

To analyze such a scenario, we run our experiments on
SYSTEM B with four Intel Xeon CPU E7-8870 v4 (Broadwell)
CPUs, each with 20 Cores/40 Threads @ 2.1 GHz. Despite the
fact that the four sockets are fully connected, the impact of
the interconnect can be higher than on SYSTEM A as more
parts of the target data structure might be stored in caches of
other sockets. In figure 6 we report the sustained throughput
for an increasing amount of active sockets, using the best
configuration of the combined buffer. The number of active
threads matches a full utilization of the used sockets, which
also increases contention.

We can see that there is a substantial performance improve-
ment of up to 200% for the combined buffer on multiple sockets.
For this system, the sweet spot is a 2 socket configuration.
For 4 sockets there are fewer benefits, probably because a
larger core count results in more performance in terms of
concurrent update operations, which again is advantageous for
the simple approach, while it cannot be utilized by the buffering
technique which saturates the inter-socket links earlier. Like in
the previous experiments (cf. figure 4a), there is an advantage
for all socket counts especially for large graphs.

VI. APPLICATION TO OTHER ALGORITHMS

In the previous section we showed that software buffering can
improve performance of a simple histogram-like computation
by up to 89% on the skewed data and 82% on the non-skewed
data (SYSTEM A). Furthermore, we showed the applicability
of this concept under increasing memory access latency. The
combined buffer has proven to be very effective, and in contrast
to the fully replicated data structures approach only imposes a
very low memory overhead.

We now apply the software buffering to more complex
applications, which requires an adapted use of the buffer
and potentially introduces new constraints and preconditions.
Furthermore, the performance improvement can differ as there

Sequential Parallel Direct Parallel Buffered

10 12 14 16 18 20 22 24 26

102

103

Scale factor

M
PE

PS

Fig. 7: Update throughput in millions of processed edges per
second (MPEPS) for push-based PAGERANK on RMAT graphs
(SYSTEM A)

Listing 2: Algorithmic core of a push-based PAGERANK

1 auto& neighbourhood = adj[vertex];
2 double delta = (damping * ranks[vertex]) /
3 static_cast<double>(neighbourhood.size());
4 for (auto targetVertex : neighbourhood){
5 //atomicIncrement(newRanks[targetVertex], delta); //

not buffered
6 buffer(targetVertex, delta); // buffered
7 }

is significant work that can overlap with update operations.
In this section, we outline the use of small software buffers
in the context of push-based versions of two popular graph
algorithms: PAGERANK and breadth-first search (BFS).

A. PAGERANK

The iterative, push-based PAGERANK algorithm is an ideal
example where software buffering can be directly applied. As
depicted in listing 2, the algorithm computes a per-vertex update
and subsequently pushes this value to all its neighbors (line 5).
To use a buffer, it is sufficient to buffer the push operation of
the values to the neighbors (line 6). The buffer itself needs
to be set up only once per worker thread, with each worker
processing one or more work items of multiple vertices. At
the end of each iteration, the buffers have to be flushed.

We implemented PAGERANK in the context of SAP HANA
using its Jobs Executor Framework [9], and a parallelism
scheme that uses optimized work packages to utilize all cores.
The graph is represented as an adjacency list using a vector of
vectors. As in the vertex degree counting example, the vertex
IDs are dictionary encoded by the appearance of the IDs in the
edge list. We do not use any enforced order like a BFS-order
on the IDs that could further enhance the data locality5.

The atomic update is realized by a combination of a normal
load, a floating-point add, and a CAS operation as x86 does not
directly support atomics for double floating-point values. As
buffering technique we select a combination of a direct map
with 16 entries and a FIFO with 8 entries. We evaluated this
buffer configuration on SYSTEM A on several RMAT graphs
of different size, with a damping factor of 0.85 [10] and a
maximum error threshold of 10−6 as PAGERANK parameters.
The RMAT graphs are undirected and are similarly generated

5Vertex ID orders like BFS-order can in practice improve the (sequential)
performance of an algorithm as they can increase locality. The problem of
reordering is that even simple techniques can take longer then the algorithm
that they should accelerate.

as described in section IV-B, but with an edge factor of 32.
We measure the whole execution of a full PAGERANK run
after the creation of the adjacency list and its dictionary, from
the setup of all supporting data structures until the algorithm
converges and the result vector can be returned. Ten repeated
full PAGERANK runs are executed and measured, and we report
mean throughput in Processed Edges per Second (PEPS).

What we can see in figure 7 is that we achieve a performance
improvement of more than 30% for small graphs, which likely
contain update contention. For larger graphs, this improvement
decreases as the contention also does, but even in this case
the buffer causes no substantial disadvantage. Beyond SF 17,
where parallel execution has a performance advantage over
sequential execution, we observe a maximum improvement of
12% for SF 19 and a minimum of -2.7% for SF 23. SF 23
seems to be a local minimum as we see an improvement of
7.4% for SF 25.

B. BFS

The use of the buffer inside a push-based BFS algorithm is
more difficult as it requires additional algorithmic engineering,
which includes reduction on the prerequisite’s strength for the
buffer usage. A BFS, which uses a visited bitmap to eliminate
duplicate discoveries of vertices, allows to perfectly buffer the
updates to the visited bitmap.6 For a block of 64 vertices inside
of the visited bitmap, all potential updates are gathered in the
buffer together with the address prefix of these vertices. When
it is necessary to apply them to the bitmap, it is done once for
the block with a single “atomic or”.

As some bits set during the block update might have been
already set previously, the set of newly marked vertices has to
be determined.7 We present the code in listing 3. The newly
marked bits are the difference of the update block and the
state in the bitmap before the update, which can be obtained
as a byproduct of a CAS-based “atomic or” implementation8.
However, this reduces the strength of buffering as the algorithm
now has a dependency to a global representation of the buffered
visited data structure at update time.

Similar to PAGERANK, we implemented a parallel, level-
wise, push-based BFS, which computes the hop distance to each
reachable vertex. As buffering technique, we select a combined
buffer with 32 entries for the direct map, 6 entries for the
FIFO, and late combining. We check before each (buffered)
update of the global bitmap if an entry is already set, in order
to reduce the number of updates on the global bitmap and
accompanying cache invalidations. This optimization changes
the majority of operations on the global bitmap to reads as there
are many edges per vertex. We evaluate our implementation
on SYSTEM A and SYSTEM B on RMAT graphs of different
size. We measure the execution of the BFS algorithm after the

6Other implementations like [11] filter duplicates by checking set values in
other data structures like a level map that are generated during a BFS run.

7There are BFS variants like the implementation related to Merrill et al. [12]
that produce and tolerate a few duplicates as their goal is not to produce a
list of unique vertex IDs in level order.

8The baseline implementation uses the fetch-atomic “lock bts”(bit test and
set) to perform the update on the visited data structure.

Listing 3: Block-wise update on visited bitmap with estimation
of updated vertex.
1 atomic<uint64_t>& visitedEntry = bfsData.

discoveredVertices[blockToUpdate];
2
3 //check if new vertex are discovered
4 uint64_t blockToUpdatePrevious = visitedEntry.load();
5 if ((blockToUpdatePrevious | blockUpdates) !=

blockToUpdatePrevious){
6 blockToUpdatePrevious= visitedEntry.fetch_or(

blockUpdates);
7
8 // detect bits that are really new
9 uint64_t changed = (˜blockToUpdatePrevious) &

blockUpdates;
10 [...]// regeneration of updated vertex ids and

copying to next queue
11 }

construction of the adjacency list including the construction
and destruction of all supporting data structures.

The BFS algorithm has been executed and measured 250
times, and we report the throughput derived from the mean of
these measurements in Traversed Edges per Second (TEPS).
As the number of reads at runtime dominate and updates only
interfere with them, and due to a higher share of overheads, the
performance improvements are smaller compared to PAGER-
ANK. On SYSTEM B for large graphs with scale factors 20 to
26, a speedup between 2% and 15% can be reached, similar to
previous results. For small to medium size graphs with scale
factors 12 to 18, a speedup of 2.5% to 4.5% is achieved. Due
to low thread numbers and high locality for these graphs, also
slowdowns between 2 and 8% can be observed.

On SYSTEM A the improvements are small as the number
of physically available threads is lower and subsequently the
exploitable contention. For large graphs with scale factors 20
to 26, the speedup ranges between 2% and 9%. For small to
medium size graphs with scale factors 12 to 16, a speedup of
1.8% to 6.9% can be reached. We see for medium graphs with
scale factors 17 to 19 slowdowns between 3% and 9%, due
to low thread numbers and high locality for these graphs to a
greater extend compared to SYSTEM B. In addition there are
outlier in the areas with performance improvements with small
slowdowns (SF 13: -2.6%, SF 22: -0.2%, SF 26: -2.3%).

VII. DISCUSSION

The most important observation is that software buffering can
improve the performance of concurrent updates. According
to our measurements on a low-latency system, buffered ap-
proaches like the combined buffer outperform standard parallel
approaches, whenever a parallel execution has an advantage
over sequential execution (i.e., when the buffered data structure
exceeds last-level cache size). This improvement exists also for
different types of update patterns, skewed or non-skewed, so it
is also suitable for upfront unknown patterns. Additional costs
for buffering techniques are mainly the memory consumption
of the buffer itself. As this is independent of the size of the
buffered data structure, the buffering techniques are perfectly
suited for memory-constrained environments.

The main idea of the buffers is to either eliminate updates on
global data structures by local buffering or to reduce the costs
of atomic updates by prefetching. According to our evaluation

Sequential Parallel Direct Parallel Buffered

10 12 14 16 18 20 22 24 26

102

103

Scale factor

M
T

E
PS

(a) SYSTEM A

10 12 14 16 18 20 22 24 26

102

103

Scale factor

M
T

E
PS

(b) SYSTEM B

Fig. 8: Traversal throughput in millions of traversed edges per second (MTEPS) for push-based BFS on RMAT graphs

in section V, these expectations are fulfilled. Our approach is
also capable of tolerating higher latency (cf. section V-C), but
buffering parameters like the FIFO queue size have to be tuned
for the particular hardware configuration.

Furthermore, the fully replicated data structures approach
provides a performance advantage when sufficient work and
contention exist, but likewise a significant part of the updated
data structure has to fit into the cache. In this case, it takes
advantage from the low per-update overhead, similar to the
sequential approach. Furthermore, in high-latency settings it
can improve performance by exploiting locality (same NUMA
node), or leveraging fast DRAM caches temporally. However,
fully-replicated data structures increase memory consumption
proportionally to the number of threads and the total size of
the updated data structure, so the applicability of this approach
is highly limited.

VIII. RELATED WORK

In the literature there are several approaches to speed up updates
on shared objects in parallel scenarios. We divide them into
those rather based on software respectively hardware concepts:

A. Software-Focused Related Work

The most effective way in many cases is to avoid such updates
at all. In the area of graph processing it is often possible to
formulate an algorithm in a push or pull variant [13], [14],
[15]. Push-based algorithms typically compute an update on a
per-vertex base and scatter the result across the neighborhood
of the vertex. Since the scatter operation is often performed in
parallel, it requires synchronization techniques, such as atomics.

In contrast, pull-based graph algorithms gather data from
the neighborhood of a vertex and update values for this
vertex locally. Because the pull variant is local, it does not
require synchronization while updating vertices. In practice,
synchronization is only one factor of overall performance, so
there are situations, e.g., because of the graph topology, where
the performance of the pull-based algorithms is inferior to
their push-based counterparts. This is the reason why prior
work often recommends a hybrid approach, which combines
the advantages of push-based and pull-based processing.

In the area of numerical optimization for machine learning,
Niu et al. [16] propose a parallel stochastic gradient descent
(SGD) update schema that is lock-free and does not use atomics

as it accepts lost updates due to a lack of atomicity. They argue
that the cost function of many machine learning problems that
the SGD algorithm minimizes is rather sparse. Thus, individual
SGD steps that are executed concurrently effect only small
parts of the result, what makes lost updates insignificantly rare.

In the area of aggregations for relational databases,
Cieslewicz and Ross [6] investigate hash-based aggregation
on a single Sun UltraSPARC T1 that provides 32 threads/8
cores without out-of-order execution and limited cache (8 kB
L1/ 3MB shared L2). Similar to this work, they analyze the
behavior of aggregation using a single shared hash table and a
hash table per thread. In addition, they propose an approach
they call “hybrid aggregation” that uses a small hash table per
thread, which evicts aggregated values to a shared hash table,
when it is full, and they propose an adaptive framework, which
selects the best approach depending on the data to aggregate.
The main difference to the small buffers of our approach is
that they use entire hash tables per thread, in combination
with a FIFO-based eviction policy for the buckets. Besides
this difference in data structures, they furthermore do not use
prefetching techniques and the used CPU requires different
trade-offs than our multi-socket x86 CPUs.

Apart from accelerating updates on many shared objects,
several techniques have been proposed to enhance updates and
accesses on a single shared object, like a queue. One example
for these techniques are delegates [17]. This approach uses a
dedicated thread—the delegate—, which handles all accesses
to a shared resource. All other threads send updates targeting
the shared resource to the delegate, which processes them
locally without additional synchronization. The advantage of
this approach is that no synchronization is necessary when
accessing the shared resource. A clear disadvantage is that it is
not tailored towards handling independent updates on a large
range of shared resources, and that the delegate can quickly
become a bottleneck.

B. Hardware-Focused Related Work

There are also many hardware concepts to accelerate parallel
synchronization. The BlueGene/Q architecture [18] provides
several optimizations to the POWER architecture. One part of
these optimizations is a set of specific atomic integer update
operations that are pushed down to L2 cache slices. If multiple
threads try to concurrently update addresses of the same slice

using these atomics, the updates will be sequentially applied,
without cache invalidation if the updates address the same cache
line. Then, the only overhead caused by update contention
originates from the mandatory serialization of updates.

Additionally, the BlueGene/Q architecture has two hardware
transactional memory modes that are supported by the L2
cache: the first one is a transaction memory mode, which
allows threads to perform updates in isolation and makes
them visible at once. If a conflict between multiple concurrent
sessions occurs, the hardware can either arbitrarily choose
to abort transactions, or allow the software to choose which
transaction succeeds or is aborted. The second mode is called
speculative execution mode and ensures that the execution
of multiple parallel threads fulfills an expected sequential
execution behavior as the hardware tracks data dependencies.

Not only CPUs provide atomic operations, but also modern
GPUs. NVIDIA GPUs [19] for example provide a variety of
atomic operations, e.g., add and CAS, that can operate on
integer and floating-point (since compute capability 6.0) values
using a relaxed memory model. Historically, GPUs have been
added to systems as accelerators with their own address space,
but current multi-GPU systems and technologies like NVLink
allow a GPU to share its address space with other devices. To
keep the cost for atomic operations low when there is no need
to synchronize across devices, recent NVIDIA GPUs provide
scoped atomic operations that guarantee atomicity on the scope
of a thread block, a single device, or the entire system.

Finally, Schweizer et al. [20] provide an in-depth analysis
of the behavior of CAS and fetch-atomic on different X86
architectures, including a performance model for atomics. They
conclude that CAS and fetch-add atomics essentially have the
same performance as long as there is no “wasted work” by
the CAS operation. Another result is that atomics prevent ILP,
which is one of the main motivations for this work.

IX. CONCLUSION

In this paper we show that parallel atomic update operations
can be accelerated using software buffering techniques. The
precondition is that updates have to be associative and com-
mutative and need to be spread across a range of addresses.

The most commonly found technique for such problems
is the use of thread-local, fully replicated data structures
that are later merged, which can significantly improve update
performance because it avoids atomics completely. The cost
is that it requires a high ratio of updates to target structure
size, and that memory consumption increases linearly with the
number of threads and the size of the buffered data structure.

As an alternative, we introduce the concept of small, thread-
local software buffers. In particular, the size of such buffers is
much smaller than thread-local, fully replicated data structures,
and it is not sensitive to update rate or pattern. Experimental
results show that our technique can substantially improve
performance, in particular for data sizes exceeding cache
capacity and highly parallel executions. We also demonstrate
that our technique is capable of tolerating an increasing memory
access latency, as commonly found in multi-socket systems.

Finally, our experiments with graph computations demonstrate
the applicability to other real-world applications.

In conclusion, software-based buffering can be beneficial to
the overall throughput, however, the right buffering technique
depends on aspects including memory-level parallelism, prob-
lem size (target structure, number of updates), concurrency,
and last but not least memory latency.

ACKNOWLEDGMENTS

We would like to thank Intel and our colleagues Romans
Kasperovics, Wolfgang Lehner, Roman Dementiev and Ismail
Oukid for their support. The author Marcus Paradies was
affiliated with SAP SE during the creation of this work.

REFERENCES

[1] Intel R©64 and IA-32 Architectures Software Developer’s Manual, Intel,
Oct. 2017. [Online]. Available: https://software.intel.com/sites/default/
files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf

[2] ARM R©Architecture Reference Manual - ARMv8, for ARMv8-A architec-
ture profile, ARM Limited, Dec. 2017.

[3] Power ISA Version 3.0B, IBM, Mar. 2017.
[4] Standard for Programming Language C++, ISO/IEC Std. 14 882:2017.
[5] J. Lee, H. Kim, and R. Vuduc, “When prefetching works, when it doesn’t,

and why,” ACM Transactions on Architecture and Code Optimization,
vol. 9, no. 1, pp. 2:1–2:29, Mar. 2012.

[6] J. Cieslewicz and K. A. Ross, “Adaptive aggregation on chip multipro-
cessors,” in 33rd International Conference on Very large data bases.
VLDB Endowment, 2007, pp. 339–350.

[7] Graph 500 Steering Committee. Graph 500 benchmark 1 (”search”).
[Online]. Available: http://www.graph500.org/specifications

[8] C. Seshadhri, A. Pinar, and T. G. Kolda, “An in-depth study of stochastic
kronecker graphs,” in 11th International Conference on Data Mining
(ICDM). IEEE, 2011.

[9] I. Psaroudakis, T. Scheuer, N. May, and A. Ailamaki, “Task scheduling for
highly concurrent analytical and transactional main-memory workloads,”
in 4th International Workshop on Accelerating Data Management Systems
Using Modern Processor and Storage Architectures (ADMS), 2013.

[10] S. Brin and L. Page, “Reprint of: The anatomy of a large-scale
hypertextual web search engine,” Computer networks, vol. 56, no. 18,
pp. 3825–3833, 2012.

[11] C. E. Leiserson and T. B. Schardl, “A work-efficient parallel breadth-first
search algorithm (or how to cope with the nondeterminism of reducers),”
in 22nd annual ACM symposium on Parallelism in algorithms and
architectures. ACM, 2010, pp. 303–314.

[12] D. Merrill, M. Garland, and A. Grimshaw, “Scalable gpu graph traversal,”
in ACM SIGPLAN Notices, vol. 47, no. 8. ACM, 2012, pp. 117–128.

[13] S. Beamer, K. Asanović, and D. Patterson, “Direction-optimizing breadth-
first search,” Scientific Programming, vol. 21, no. 3-4, 2013.

[14] J. J. Whang, A. Lenharth, I. S. Dhillon, and K. Pingali, “Scalable data-
driven pagerank: Algorithms, system issues, and lessons learned,” in
European Conference on Parallel Processing. Springer, 2015.

[15] M. Besta, M. Podstawski, L. Groner, E. Solomonik, and T. Hoefler, “To
push or to pull: On reducing communication and synchronization in graph
computations,” in 26th International Symposium on High-Performance
Parallel and Distributed Computing. ACM, 2017.

[16] B. Recht, C. Re, S. Wright, and F. Niu, “Hogwild: A lock-free approach
to parallelizing stochastic gradient descent,” in Advances in neural
information processing systems, 2011, pp. 693–701.

[17] S. Roghanchi, J. Eriksson, and N. Basu, “ffwd: delegation is (much) faster
than you think,” in 26th Symposium on Operating Systems Principles.
ACM, 2017.

[18] R. Haring, M. Ohmacht, T. Fox, M. Gschwind et al., “The ibm bluegene/q
compute chip,” IEEE Micro, vol. 32, no. 2, pp. 48–60, 2012.

[19] CUDA C Programming Guide, v9.2 ed., Nvidia, May 2018. [Online].
Available: https://docs.nvidia.com/cuda/pdf/CUDA C Programming
Guide.pdf

[20] H. Schweizer, M. Besta, and T. Hoefler, “Evaluating the cost of atomic
operations on modern architectures,” in International Conference on
Parallel Architecture and Compilation (PACT). IEEE, 2015.

